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Abstract We show that the typical wind-tree model, in the sense of Baire, is recurrent and
has a dense set of periodic orbits. The recurrence result also holds for the Lorentz gas: the
typical Lorentz gas, in the sense of Baire, is recurrent. These Lorentz gases need not be of
finite horizon!

Keywords Ehrenfest wind-tree model · Lorentz gas · Recurrence · Translation surface ·
Square tiled surface

In 1912 Paul and Tatiana Ehrenfest proposed the wind-tree model of diffusion in order to
study the statistical interpretation of the second law of thermodynamics and the applicabil-
ity of the Boltzmann equation [3]. In the Ehrenfest wind-tree model, a point particle (the
“wind”) moves freely on the plane and collides with the usual law of geometric optics with
randomly placed fixed square scatterers (the “trees”). The notion of “randomness” was not
made precise, in fact it would have been impossible to do so before Kolmogorov laid the
foundations of probability theory in the 1930s. We will call the subset of the plane obtained
by removing the obstacles, the billiard table, and the motion of the point, the billiard flow.

The wind-tree model has been studied in [1, 4, 6] and the references therein. From the
mathematical rigorous point of view, there have been two results on recurrence for wind-tree
models, both on a periodic version where the scatterers are identical rectangular obstacles
located periodically along a square lattice on the plane, one obstacle centered at each lattice
point. Using results on skew products above rotations, Hardy and Weber [5] proved recur-
rence and abnormal diffusion of the billiard flow for special dimensions of the obstacles, for
very special flow directions. More recently Hubert, Lelièvre, and Troubetzkoy have studied
the general full occupancy periodic case [7]. They proved that, if the lengths of the sides
of the rectangles belong to a certain dense Gδ subset E ′, then the dynamics is recurrent and
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they gave a lower bound on the diffusion rate. The recurrence was proven by analysis of the
case when the lengths of the sides are rational and belong to the set

E = {
(a, b) = (p/q, r/s) ∈ Q × Q :
(p, q) = (r, s) = 1, 0 < p < q, 0 < r < s,

p, r odd, q, s even
}
.

Another set of rationals lengths was used to prove the diffusion result. The set E ′ ⊂ (0,1)2

consists of dimensions which are sufficiently well approximable by both of these rational
sets.

In this article we will prove the recurrence of typical (in a topological sense) wind-tree
models. We consider the following model. Fix a finite or countable set of dimensions of
obstacles F ⊂ (0,1)2 ∪ {(0,0)} such that F ∩ (E ∪ E ′) �= ∅. Let e be in this intersection,
and let We denote the billiard table with an identical copy of the obstacle e centered at each
lattice site. Consider the set of all wind-tree models F Z

2
with the product topology on F Z

2
.

A lattice site with an obstacle of dimension (0,0) will be interpreted as a lattice site without
obstacle. The recurrence of the table We will play a crucial role in our proof of recurrence
of typical wind-tree models.

For each W ∈ F Z
2
, we will also refer to the corresponding table as W . More precisely,

the table W is the plane R2 with the open rectangle of dimension Wi,j centered at (i, j) ∈ Z2

removed for each (i, j) ∈ Z2. The phase space of the billiard flow � is the W × S1, with the
directional vector before and after collision with the boundary of the rectangles identified.
There is a natural infinite invariant measure, the phase volume μ with dμ := dx dy dθ .

Consider a flow � on a measured topological space (�,μ) such that the measure of each
open set is positive. A point x ∈ � is called recurrent for �, if for every neighborhood U of
x, and any T0 > 0, there is a time T > T0 such that �T (x) ∈ U ; the flow � itself is recurrent
if μ-almost every point is recurrent. If μ is a finite measure, then the celebrated Poincaré
recurrence theorem states that for any U , μ almost every point of U is recurrent.

In our setting, the billiard flow � is the constant unit speed flow, with elastic reflections
with the rectangular obstacles (i.e. angle of incidence equals angle of reflection). This flow
preserve the natural phase volume which is infinite, and thus one can not apply the Poincaré
recurrence theorem. Our first result is that recurrence satisfies a 0-1 law:

Proposition 1 For each ergodic shift invariant measure on F Z
2
, the wind-tree models in

F Z
2

are almost surely recurrent, or almost surely non recurrent.

The following topological result gives evidence that wind-tree models are almost surely
recurrent.

Theorem 2 There is a dense Gδ subset G of F Z
2
, such that the billiard flow is recurrent for

every billiard table in G with respect to the natural phase volume.

An orbit is called regular if it never hits the corner of an obstacle. A direction θ ∈ S1 is
called purely periodic if all regular orbits in this direction are periodic. The tables in F Z

2
are

called square tiled if F is a finite subset of E ∪{(0,0)}. In this case there is a positive integer
Q, the least common multiple of the denominators of the dimensions of the obstacles, such
that each table W ∈ F Z

2
can be tiled in the standard way (checkerboard tiling) by squares

with side length 1/Q.
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Fig. 1 A random wind-tree
model with obstacles of sizes
(1/2,1/2) and (0,0)

Theorem 3 If F Z
2

is square tiled, then there is a dense Gδ subset G of F Z
2

such that
the billiard flow is recurrent for every billiard table in G with respect to the natural phase
volume. Furthermore for every billiard table in G there is a dense set of purely periodic
directions θ ⊂ S1.

In the proofs we will prove the recurrence of certain first return maps. For this purpose,
consider a map F on a measured topological space (�,μ) such that the measure of each
open set is positive. A point x ∈ � is called recurrent for F if for every neighborhood U of
x, there is a time n > 0 such that Fn(x) ∈ U ; the map F itself is recurrent if μ-almost every
point is recurrent.

Next we introduce the first return maps we will use. Fix a table W ∈ F Z
2

and suppose
that N ≥ 1. Let BN := {(i, j) ∈ Z2 : |i| + |j | < N} and AN,N1 := {(i, j) ∈ Z2 : N ≤ |i| +
|j | < N1}. Consider the continuous simple curve DN = DN(W) in the billiard table W

consisting of the segments of |x| + |y| = N which are in the interior of the table (not in
the obstacles) and the “outer” part of the boundary of the obstacles e with centers (i, j)

satisfying |i| + |j | = N (see Fig. 1). This curve separates the table into two parts, the finite
(or inner) part and the infinite (or outer) part. Let D̂−

N consist of the unit vectors with base
point in DN pointing into the finite part and D̂+

N pointing into the infinite part of the table.
Let D̂N := D̂−

N ∪ D̂+
N and D̂ = ⋃

N≥1 D̂N . Consider the first return maps fN : D̂N → D̂N

(wherever they are well defined) and f : D̂ → D̂. Let dl be the length measure on D̂. We
will refer to the measure dν := dl × dθ as the phase area. Clearly f preserves the phase
area. Note that the singular points (points whose images, or preimages, hit a corner or are
tangent to a side of an obstacle) are of measure 0. Also note that if we consider that map f

restricted to the set D̂−
N , then almost every point must return to D̂N since the measure space⋃N

n=1 D̂n is a finite measure space and the only possibility to escape this finite part is by
passing through D̂N .

The proofs of the results rely on the following lemma.

Lemma 4 The following statements are equivalent.

(1) The wind-tree model W is recurrent
(2) f : D̂ → D̂ is recurrent
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Fig. 2 The curve D2 as seen on
the table We consisting of the
obstacle e at such lattice point

(3) there is a positive sequence εn ↘ 0 and a sequence Nn → ∞ such that fNn is well
defined for at least (1 − εn)% of the points in D̂Nn .

Proof Clearly (1) implies (2) and (2) implies (3). We will now show that (3) implies (2). We
claim that if N1 < N2, and if fN2 is well defined almost everywhere, then fN1 is also well de-
fined almost everywhere. Simply consider the map fN1 induced on the set

⋃
N≤N2

D̂N . This
map is well defined almost everywhere since fN2 is. Thus fN1 is recurrent by the Poincare
recurrence theorem. Thus to show that each fN is actually defined almost everywhere and
thus f is recurrent, it suffices to show that fN is, for infinitely many N .

Note that the map f is invertible. Consider a set U ⊂ D̂Nn which never recurs to D̂Nn .
We claim that f jU ∩ f kU = ∅ for all j > k ≥ 0. If not then by the invertibility of f we
would have f j−kU ∩ U �= ∅, i.e. some points in U recur to U ⊂ D̂Nn , a contradiction. This
implies that since the set D̂Nn are of finite measure, almost every point in U can visit each
set D̂Nm only a finite number of times. Thus we can define for almost every x ∈ U a (finite
time) mn(x) ≥ 0 be the last time the orbit of x visits D̂Nm . The map F(x) = f mn(x)(x) is
a measure preserving map of U into the set of nonrecurrent points in D̂Nm . This set has
measure at most εm. Since this hold for all m ≥ n, the set U is of measure 0, i.e. fN is well
defined almost everywhere, and thus f is recurrent.

Finally we need to show that (2) implies (1). Consider any small open ball B in the phase
space. Flow each (non-singular) point in this ball until it hits the set D̂. Since the ball is
open, it has positive phase volume, and its image on the set D̂ also has positive phase area.
Almost every of these points is f recurrent.

Fix a nonsingular x ∈ B such that xN := �t(x) ∈ D̂N . Note that by transversality and
the Fubini theorem almost every x ∈ B corresponds to a f -recurrent xN . To conclude the
proof we suppose that xN is f -recurrent and we will show that this implies that x is �-
recurrent. Choose a open neighborhood U of x small enough that for each y ∈ U there
is a t (y) very close to t such that �t(y)(y) ∈ D̂N . Let U ′ = {�t(y)(y) : y ∈ U}. This is a
small neighborhood of �t(x), and by the above results there is an (arbitrarily large) n such
that f nxN ∈ U ′. Thus f nxN = �s(xN) = �s+t (x) ∈ U ′ for some large s. Since this point
�s+t (x) is in U ′ is the image �t(y0)y0 of some y0 ∈ U . Thus �s+t−t (y0)(x) = y ∈ U and we
conclude that x is recurrent. �

Proof of Theorem 2 The idea of the proof is simple. The table We is recurrent. A table
in our dense Gδ will have infinitely many large annuli for which it agrees with We , i.e. it



64 S. Troubetzkoy

has the obstacle e at all lattice sites in the annuli. The widths of these annuli will increase
sufficiently quickly to guarantee the recurrence.

Fix ε > 0 and N ≥ 1. Fix a cylinder set in C = Ck,N ∈ F BN , i.e. C is given by specifying
the rectangle size (or absence of rectangle) at all the lattice points in BN (the index k enu-
merates the finite (or countable) collection of all such cylinder sets). Let N1 � N . Consider
the cylinder set C ′ = C ′

k,N,N1
such that C ′ ⊂ C, and such that for each c ∈ C ′, c(i,j) = e for all

(i, j) ∈ AN,N1 . Consider the table We . Since it is recurrent, for each fixed N , we can choose
N1 = N1(N, ε) sufficiently large so that on this table (1 − ε)% of the points in D̂+

N recur to
D̂N before leaving AN,N1. The dynamics for any table in the cylinder C ′ is identical to the
dynamics on the table We as long as it stays in the annulus AN,N1 . The (1 − ε)%-recurrence
hold for all the tables in the cylinder C ′ since the wind-tree tables in the cylinder agree with
We on AN,N1 .

Consider the set Oε := ⋃
N≥1

⋃
k C ′

k,N,N1(N,ε). Since cylinder sets are open, this set is
open. It is dense since the union is taken over all cylinder sets. Now fix a sequence εn ↘ 0,
and let G := ⋂

n Oεn . Clearly G is a dense Gδ set. For each table W ∈ G and for all n there
exists Nn = Nn(W) and k(Nn) such that W ∈ C ′

k(Nn),Nn,N1(Nn,εn). This means that for each

n ≥ 1 at least (1 − εn)% of the points in the set D̂Nn recur to D̂Nn . We apply Lemma 4 to
conclude the recurrence. �

For the proof it is very important that in the annuli the tables agree with a recurrent full
occupancy table. On the other hand for the recurrence the shape of the table in between the
annuli is not at all important. Instead of taking rectangular scatterers, we could choose circu-
lar scatterers, or more byzantine ones (as long as we can define billiard dynamics preserving
the phase volume, for example if they are piecewise C1), disjoint and finitely many in any
compact region. Furthermore, in the annuli it is not necessary that all the obstacles have the
same e ∈ E , on can fix a sequence {en} ⊂ E , and use the en in the nth annulus.

We can also relax the fact that the tables agree with a recurrent full occupancy table on
the annuli. We can replace this by an almost agreement in the following sense. The centers
of the obstacles could be assumed to be uniformly distributed in a small open ball around
each lattice point. For a cylinder set in which the restriction to an annulus (or another finite
set) the centers are very close to the lattice, the points in D̂+

N are almost recurrent. Such
perturbations will change the “itinerary” of only a small set of finite time trajectories, but
the identification of measures spaces and notions of smallness are somewhat cumbersome
to keep track of.

Proof of Theorem 3 The recurrence is a special case of Theorem 2. We will impose addition
constraints on the sequence of annuli to conclude the denseness of purely periodic directions.

Consider a periodic orbit. Any sufficiently close parallel orbit will also be periodic, hit-
ting the same sequence of sides and having the same geometric length. Geometrically this
set of parallel periodic orbits, which we will call a periodic strip, consists of the parallel
orbit of an open interval of initial points, with the endpoints having singular orbits. A peri-
odic strip is often called a cylinder in the translation surface literature, but we will not do so
here to avoid confusion with the cylinder set topology on F Z

2
. A purely periodic direction is

called strongly parabolic if the phase space decomposes into an infinite number of periodic
strips isometric to each other. In [7] it was shown that the set of strongly parabolic directions
θ for the table We are dense in S1. These directions have rational slope (±p/q with p and
q depending on θ ). We will show that for any strongly parabolic direction θ for We , for any
table W ∈ G, a.e. orbit on this table in the direction θ is periodic.
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Fix θ a strongly parabolic direction for We , and let M be the common (geometric) length
of the periodic strips. Let n be so large that N1(Nn, εn) − Nn > 2M and let Pn := (Nn +
N1(Nn, εn))/2. On the table We all the periodic strips crossing DPn stay in ANn,N1(Nn,εn). All
regular orbits in W staring on DPn are periodic since the table W coincides with We on this
set.

Now consider any phase point in W with regular orbit starting strictly inside BPn . First
of all since DPn consists completely of periodic orbits this orbit can not reach DPn without
being one of these periodic orbits. If the orbit does not reach DPn then it stays completely
inside BPn . Since the orbit’s slope is rational, bounded and the billiard table is square tiled
with squares of side length 1/Q, the y coordinate can only take a finite number of values
when crossing the segments {x = m/Q} ∩ BPn with m ∈ Z. Thus it must visit some point
(m0/Q,y0) twice with the same direction. The orbit is periodic since the dynamics is invert-
ible. �

Proof of Proposition 1 We use Lemma 4, the wind-tree model W ∈ F Z
2

is recurrent if and
only condition (3) of the lemma holds: there are sequences εn = εn(W) ↘ 0 and Nn =
Nn(W) → ∞, such that (1 − εn)% of all points in D̂Nn recur to D̂Nn .

We claim that a stronger property is true: fix a sequence ε′
n ↘ 0 (this sequence does not

depend on the table), a wind-tree model is recurrent iff there exists Mn = Mn(W) > Nn =
Nn(W) ≥ n such that (1 − 2ε′

n)% of all points in D̂Nn recur to D̂Nn before hitting D̂Mn .
Clearly this condition implies condition (3) of Lemma 4. To see the converse fix a sequence
ε′
n ↘ 0. If a wind-tree model satisfies condition (3), then we can choose Mn > Nn such that

(1−2εn)% of all points in D̂Nn recur to D̂Nn before hitting D̂Mn . By choosing a subsequence
we can suppose that Nn ≥ n. Then the recurrent table satisfies the above condition for the
sequence {ε′

n} since if εn → 0 faster than ε′
n, then it satisfies the condition with ε′

n, and if not
then we can choose a subsequence for which it goes faster.

One needs to specify only a finite part of the table to check this property at a fixed stage
n, i.e. if a table W ∈ F Z

2
is recurrent, then all the tables in the cylinder set with the obstacles

specified to be those of W at lattice points (i, j) with |i| + |j | ≤ Mn satisfy this property for
this fixed n. Let ONn,Mn denote the union of all cylinder sets such that this happens at stage
n. This is an open set. Thus by the above characterization, the set of recurrent wind-tree
models can be written as

⋂∞
n=1

⋃
Mn>Nn≥n ONn,Mn , thus it is a Baire measurable set.

The notion of recurrence is shift invariant (in the space F Z
2
). Thus since the set of recur-

rent wind-tree models is measurable and invariant, it is of measure 0 or 1 for any invariant
measure which is ergodic for the Z2 shift. �

1 Lorentz Gas

A Lorentz gas is similar to the Ehrenfest wind-tree model, with the rectangular obstacles
replaced by strictly convex (C3) obstacles. A Lorentz gas is said to verify the finite horizon
condition if any infinite line intersects infinitely many obstacles with bounded gaps between
the intersections. In some of the literature, the word finite horizon also assumes that the
minimal distance between obstacles is strictly positive [8, 9], we will call this finite hori-
zon*. The long standing conjecture that finite horizon* periodic Lorentz gases are recurrent
was independently resolved by Conze [2] and Schmidt [10] in the 1990’s, building on pre-
vious results on the hyperbolic structure. Using the hyperbolic structure models, Lenci has
shown that Baire typical Lorentz gases with finite horizon* are recurrent [9]. Here we prove
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Fig. 3 Lorentz gases with triangular and square lattices

that Baire typical Lorentz gases are recurrent. Our typical gas will satisfy a weaker prop-
erty which we call locally finite horizon: (i) the distance between obstacles is still strictly
bounded away from 0; and (ii) any infinite line must intersect infinitely many obstacles. The
reason that (ii) holds is that any infinite line must intersect infinitely many of the annuli con-
structed in the proof of the theorem, and in these annuli the billiard table agrees with a finite
horizon model, thus each line must intersect infinitely many obstacles. However the gaps
between the intersections are not necessarily bounded since we do not control the behavior
of the billiard table between the annuli.

Rather than try to state a general result, we give two examples. Generalizations to other
situations should be clear.

(1) Let T denote the triangular lattice. Fix e a convex open set with C3 boundary (for
example a ball), sufficiently large so that if we place the obstacle e at each lattice site,
then the corresponding infinite table satisfies the finite horizon* condition. Let 0 denote the
absence of an obstacle. Then the set of Lorentz billiard tables we consider is {0, e}T, note
that since we are allowing empty cells, these tables do not necessarily have finite horizon,
not even locally finite horizon (for example the table with no obstacles).

(2) Consider the Z2 lattice. Here we let e denote the obstacle consisting of the union
of 5 convex open sets with C3 boundary (again for examples balls). The 5 convex sets are
chosen so the table consisting of the obstacle e at each lattice site is of finite horizon. Again
0 denotes the absence of an obstacle. We consider the set of Lorentz gases {0, e}Z

2
. These

tables, like those above, do not necessarily have finite horizon, nor locally finite horizon.
The proof of the following theorem is essentially identical to the proof of Theorem 2 and

will be omitted.

Theorem 5 There is a dense Gδ subset G of each of the above two examples, such that
the billiard flow is recurrent for every billiard table in G with respect to the natural phase
volume.

All the tables in the dense Gδ will have a locally finite horizon and some will not have
finite horizon. We can even construct a dense Gδ of tables with locally finite horizon, all of
which do not satisfy the finite horizon condition. This is done by additionally insuring that
there are infinitely many increasing annuli without obstacles.

It would be interesting to investigate if this implies ergodicity like in the finite horizon
case (see [8, 9]). It would also be interesting to get quantitive information on the recurrence



Ehrenfest Wind-Tree Model 67

properties of We , which would allow to construct explicit examples of recurrent Lorentz
gases with infinite horizon.

Acknowledgements Many thanks to Marco Lenci and the referees for useful comments.

References

1. Bianca, C., Rondoni, L.: The nonequilibrium Ehrenfest gas: A chaotic model with flat obstacles? Chaos
19, 013121 (2009)

2. Conze, J.-P.: Sur un critère de récurrence en dimension 2 pour les marches stationaires. Ergod. Theory
Dyn. Syst. 19, 1233–1245 (1999)

3. Ehrenfest, P., Ehrenfest, T.: Begriffliche Grundlagen der statistischen Auffassung in der Mechanik. En-
cykl. d. Math. Wissensch. IV 2 II, Heft 6, 90 S (1912) (in German), translated in: The Conceptual Foun-
dations of the Statistical Approach in Mechanics (trans. Moravicsik, M.J.), pp. 10–13. Cornell University
Press, Itacha (1959)

4. Gallavotti, G.: Divergences and the approach to equilibrium in the Lorentz and the wind-tree models.
Phys. Rev. 185, 308–322 (1969)

5. Hardy, J., Weber, J.: Diffusion in a periodic wind-tree model. J. Math. Phys. 21(7), 1802–1808 (1980)
6. Hauge, E.H., Cohen, E.G.D.: Normal and abnormal diffusion in Ehrenfest’s wind-tree model. J. Math.

Phys. 10, 397 (1969)
7. Hubert, P., Lelièvre, S., Troubetzkoy, S.: The Ehrenfest wind-tree model: periodic directions, recurrence,

diffusion. arXiv:0912.2891. Crelle (to appear)
8. Lenci, M.: Aperiodic Lorentz gas: recurrence and ergodicity. Ergod. Theory Dyn. Syst. 23, 869–883

(2003)
9. Lenci, M.: Typicality of recurrence for Lorentz gases. Ergod. Theory Dyn. Syst. 26, 799–820 (2006)

10. Schmidt, K.: On joint recurrence. C. R. Acad. Sci. Paris Sér. I Math. 327, 837–842 (1998)

http://arxiv.org/abs/arXiv:0912.2891

	Typical Recurrence for the Ehrenfest Wind-Tree Model
	Abstract
	Lorentz Gas
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


